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Abstract - In  this paper, we propose an optimal fault 
tolerant broadcasting algorithm which requires only n + 1 
steps for an SIMD hypercube with up to n-1 faulty nodes. 
The basic idea of the proposed algorithm is first to find 
a fault-free subcube (CS) which contains the source node 
(S )  such that each neighboring subcube of the subcube CS 
contains at least one fault. N e d ,  the message is broad- 
cast along the internal dimensions followed b y  external 
dimensions of the subcube CS. This process requires n 
steps. Since this process does not guarantee that all the 
fault-free nodes receive the message, an extra step may be 
needed. We prove that there exists an internal dimension 
of the subcube Cs such that all the nodes which did not 
receive the message in n steps will receive the message 
b y  broadcasting the message along that dimension. We 
also develop a generalized broadcasting algorithm which 
tolerates any number of faults. 

1 Introduction 
Hypercube architecture has received much attention 

for massively parallel processors due to its attractive 
properties [l]. Some examples of commercial machines 
based on hypercube are nCUBE/2, iPSC and CM-2. The 
nCUBE and iPSC are MIMD hypercubes, whereas the 
CM-2 is an SIMD hypercube. The routing and broad- 
casting operations in MIMD hypercubes have been ex- 
tensively addressed in [2]. The fault tolerant routing and 
broadcasting schemes have been also proposed in [3, 41. 

However, very few papers have addressed the fault- 
tolerant broadcasting in the SIMD hypercube multipro- 
cessors. Since the SIMD hypercubes are the restricted 
version of the MIMD hypercubes, an efficient SIMD 
broadcasting algorithm is more difficult to implement 
than the MIMD counterpart. The simplest algorithm 
to broadcast in the SIMD n-cube containing up to n - 1 
faulty nodes takes 272 steps and requires no knowledge 
of fault locations [5]. This algorithm forwards messages 
successively along dimensions 0, 1, ..., n - 1 twice. The 
best known algorithm proposed in [SI takes n + 12 steps 
in an n-cube containing at mosi. n - 1 faults. 

In this paper, we assume that, the faulty nodes of the 
hypercubes are detected and known before the fault- 
tolerant broadcasting takes place. The links incident on 
the filulty nodes are also assumed to be faulty. A broad- 
casting algorithm is said to be optimal if it passes data 
from the source node to all fault-free nodes in the mini- 
mum possible steps. We present an optimal broadcasting 
algorithm which takes n + l  steps in an n-cube containing 
up to n - 1 faulty nodes. We also study the situation with 
n or more faults in an n-cube. The proposed broadcast- 

ing algorithm takes n + 7 and n + 22 steps for an n-cube 
containing up to 2n - 3 and 4n - 9 faults, respectively. 
It is known that even in MIMD hypercubes the broad- 
casting takes n + 1 steps in presence of up to n - 1 faults 

The rest of this paper is organized as follows. In Sec- 
tion 2, the optimal fault tolerant broadcasting algorithm 
is presented. We develop a generalized version of the 
broadcasting algorithm to handle a large number of faults 
in Section 3. In Section 4, an efficient algorithm is pro- 
posed to find the fault-free subcube containing the source 
node such that all the neighboring subcubes are faulty. 
Finally, the concluding remarks are given in Section 5. 

17, 41. 

2 Optimal Algorithm for n, - 1 faults 
The standard SIMD broadcasting algorithm for send- 

ing a message to all nodes from a source node uses a 
dimension sequence which is pre-determined to be 0, .., 
n - 1. In each step, orily the nodes which have a copy of 
the message will forward the message to the neighbors. 
As a result, the message flows along the paths of a bi- 
nomial spanning tree of the hypercube. Fig.1 shows an 
example in which the source node is 0000 and dimension 
sequence of broadcasting in a 4-cube is 0, 1, 2, and t8hen 
3. The message is first forwarded to node 0001 along 
dimension 0, and then to 0011 from 0001 and to 0010 
from 0000 along dimension 1 in the next step and so on. 
The subscripts of PE’s shown inside the circles indicate 
the order of the dimensions in which a message travels 
to reach the specified PE’s. After 4 steps, all the nodes 
receive a copy of the message. 

The fault-free SIMD broadcasting algorithm does not 
work when one or more faults exist since the order of 
dimensions used for broadcasting is pre-determined. For 
example, assume node 0001 is faulty in Fig.1. Half the 
number of nodes in the system, i.e. the nodes in sub- 
cube ***1, are blocked from receiving the message if we 
follow the dimension sequence of fault-free broadcasting 
algorithm. However, if we redraw the binomial spanning 
tree for the dimension sequence of 1, 2 ,  3, and 0, we can 
see that faulty node 0001 will be located in one of the 
leaf nodes of the spanning tree. Thus if we broadcast. the 
message along dimensions 1, 2, 3: and then 0, four steps 
are sufficient to complete the broadcasting in the 4-cube 
containing only one fault. However, when the number of 
faults in the system exceeds one, the situation becomes 
complicated. 

We can develop a more general algorithm which is ob- 
tained by slightly modifying the fault-free broadcasting 
algorithm. We use a Ilimmsion sequence [d l  ,., ,d,,,] to 
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Figure 1: The binomial spanning tree for broadcasting. 

successfully broadcast the message from the source node 
to  all the other fault-free nodes. As we shall see, the 
subject of our paper is to determine mal ,  the number of 
steps which are needed to guarantee a successful broad- 
casting, and the ordering of the hroadcasting dimensions. 

We propose a 4-phase algorithm to broadcast a mes- 
sage from the source node S to all the other fault-free 
nodes in an n-cube containing up to n - 1 faulty nodes. 
The algorithm is outlined as follows. 

Algorithm Broadcastl(S, n ,  m), m < n - 1 
1. Find the largest fault-free subcube c d , S  which is a 

d-cube containing the source node S. (This phase 
may be modified later.) 

2. Broadcast along the dimensions internal to Cd,s. 
3. Broadcast along the dimensions external to Cd,s 

(This phase is important for n-cube with more than 
n - 1 faults and will be discussed later). 

4. Select an extra internal dimension such that the 
pseudo-faulty nodes wlll receive messages at the 
(n + step by forwarding messages along the se- 
lected gimeyjon auIty nodes in the n-cube is assumed 

to be m which is less than or equal to n - 1. The in- 
ternal dimensions of a subcube are the ones which span 
the subcube. Similarly, the external dimensions of a sub- 
cube are the ones which are not internal to the subcube. 
As we can see, after the first two phases, all the nodes 
in Cd,S receive a copy of the message. Notice that since 
c d , S  is the largest fault-free subcube containing s, each 
neighboring d-cube of c d , s  contains at least one faulty 
node. At this point, it seems that we need to be care- 
ful about determining the order of external dimensions 
of Cd,s for broadcasting since ordering the subsequent 
broadcasting dimensions determines the number of the 
fault-free nodes being blocked from receiving messages. 
Howt:ver, as we will show later, the ordering of external 
dimensions is not necessary for the n-cube with up to 
n - 1 faulty nodes. Thus the third phase just broadcasts 
the message along the external dimensions of c d , S  in any 
order. The first three phases require n steps. 

However, n steps may not suficient to broadcast the 
message from the source node to all the other fault- 
free nodes. We define the fault-free nodes which do not 

The num er o 

receive messages after n steps as pseudo-faulty nodes. 
Thus, the last phase is to select a dimension internal to 
c d , s  such that the pseudo-faulty nodes will receive mes- 
sages in the (n + l)lh step. 
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Figure 2: Selection of the extra dimension. 

The last phase selects a dimension i internal to c d , S  
such that for any pair of nodes that are neighbors along 
dimension i, at least one of them is neither faulty nor 
pseudo-faulty. We call such dimension i as a free dimen- 
sion. Similarly, a dimension is defined as a busy dirnen- 
sion if there exists a pair of faulty or pseudo-faulty nodes 
along that dimension. Thus, if the messages are broad- 
cast along the free dimension at the (n + l ) th  step, all 
the pseudo-faulty nodes will receive messages. For exam- 
ple, Fig.2 shows a 5-cube containing 4 faulty nodes. The 
largest fault-free subcube containing t,he source node S = 
00000 is * W O O .  The dimension sequence for broadcasting 
is 2, 3, 4, 1, 0. Therefore, the only pseudo-faulty node 
after 5 steps is node 00111. By forwarding the messages 
along dimension 2, 3, or 4 at the g f h  step, node 00111 
will receive a copy of message. 

To prove there always exists a free dimension, we par- 
tition the n:cube into d-cubes at external dimensions. 
This results in an (n - d)-cube whose nodes are d-cubes 
(denoted as supernodes). We label each supernode as 
PEi0il . . i j  according to the broadcasting sequence of ex- 
ternal dimensions, for 0 < j < n - d - 1, i, < i j + L .  The 
relationship between PE’s is depicted in the spanning 
binomial tree of Fig.]. Notice that each circle in F i g 1  
represents a supernode and PE*,,,, ..i, is in the level j + 1 
of the spanning binomial tree. 

We define a transfer  operatioil in the following rnan- 
ner. For each subtree Ti rooted at, PE; for 0 5 i < n - d, 
the transfer operation moves the faulty nodes in the in- 
termediate and leaf nodes of T; to P E ; .  The transfer 
operation actually changes the physical locations of the 
faulty nodes. The busy dimensions in the intermediate 
and leaf nodes of remain busy after transfer operation 
since the local addresses of faulty nodcs are not changed. 
Notice that the transfer operation may increase the num- 
ber of busy dimensions. Thus, if we can find a free dimen- 
sion for the system with transfer operation which moves 
the faulty nodes to the root of the corresponding sub- 
tree, we can say that there also exists a free dimension 
without transfer operation. 

Let fi be the number of faults in thi: subtree E ,  where 
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1 5 fi 5 n - d. After n stppt, there are (d - fi + 1) 
free dimensions in subtree T, according to the result in 
[8] which states that, for all n 2 1, given any set of n - k 
or fewer faulty nodes in an n-cube, there exist k + 1 
free dimensions. Equivalently, there are (fi - 1) busy 

busy dimensions since ~ ~ ~ ~ - d - l ( f i )  = n - 1. However, 
there are d dimensions in each supernode. Thus, there 
must exist a free dimension internal to the supernodes. 
Then we have the following theorem. 

Theorem 1: Broadcastl takes at most n + 1 steps to 
broadcast a message from the source node to all fault-free 
nodes in an n-cube containing up to n - 1 faults. 

3 n or More Faults 
In this section, we generalize the proposed optimal al- 

gorithm Broadcastl to handle n or more faults. In the 
worst case, n faults are sufficient, to disconnect one fault- 
free node from other fault-free nodes. Therefore, we as- 
sume that not all the neighbors of a fault-free node are 
faulty in order to avoid disconnecting the fault-free nodes 
in the system. Nevertheless, the likelihood of having a 
disconnected component due to n faulty nodes is negli- 
gible. We shall see that the above assumption can be 
relaxed by declaring the disconnected fault-free nodes as 
faulty without increasing too many faulty nodes. 

As mentioned earlier, the broadcasting order of exter- 
nal dimensions is important for the n-cube with more 
than n - 1 faults. The goal of ixdering the external di- 
mensions for broadcasting is to minimize the number of 
fault-free nodes being blocked from receiving messages 
by the faulty nodes. We propose a broadcasting rule to 
order the external dimensions of C d , S  as follows. For 
each dimension i which is external to c d , S ,  we split the 
n-cube into two (n-  1)-cubes, CA-l,s which contains the 
source node and CA-l which does not contain the source 
node. We broadcast along dimension i earlier than di- 
mension j if contains less number of faulty nodes 
than Ci-l. If there is a tie, we make a random selection. 
We shall see that this broadcasting rule arranges the or- 
der of t,he binomial spanning tree in such a way that most 
of the faulty nodes are in the leaf nodes of the spanning 
tree. The broadcasting rule gives us better performance 
on average when the number of faults exceeds n - 1. 

Although the broadcasting rule gives better perfor- 
mance on average, it does not indicate how many steps 
are needed to guarantee a successful broadcasting. Thus, 
in the following, we use the divide-and-conquer technique 
to develop a general broadcasting algorithm to tolerate 
a large amount of faults. The fundamental part of the 
general algorithm is Broadcastl . The idea is as follows. 
Given m faults in an n-cube, we first select an (n  - 1)- 
cube which contains the least number of faults compared 
with the number of faults in other possible (n - 1)-cubes 
in the n-cube. Next, we employ Broadcastl to broadcast 
messages to all fault-free nodes in the selected (n - 1)- 
cube. Then, the messages are forwarded from the se- 
lected (n - 1)-cube to  another ( n  - 1)-cube. Finally, one 
or more dimensions are selected to forward messages to 
pseudo-faulty nodes. Due to space limit, readers may 
refer to [9] for detail. 

We show that the general algorithm can achieve the 

dimensions. Totally, there are ( t i  - 1) = d - 1 

broadcasting in n + 7 steps in an n-cube containing at 
most 2n - 3 faults. It is easy to see that either Qn-l  
or Qk-l contains less than or equal to n - 2 faults since 
there are at most 2n - 3 faulty nodes in the system. 
Broadcast1 will always succeed since we assume there is 
no healthy node whose neighbors are all faulty. 

Suppose that Qn-l contains up to n - 2 faults. By 
Broadcastl, it takes 1 + ( n  - 1) steps to broadcast, mes- 
sages to all the nodes in Qn-l.  One more step can be 
used to broadcast messages from nodes in Qn-l to the 
corresponding nodes in Qk-,. At this point, all the fault- 
free nodes in Qk-, receive messages except the nodes 
which have faulty neighbors in Qn-l .  Totally, there are 
2n - 3 faulty or pseudo-faulty nodes in Qi-l. Here we 
need the following lemma. 

Lemma 1 [6]: In any n-cube Q,, containing a1 most 2n 
faults, there exists three dimensions J = {jl , j : , ,  j 3 )  such 
that for any j E J ,  there are at, most t,hree douldy-faulty 
j-edges. 

A doubly-faulty j-edge is ail edge across dimension j 
which has two faulty nodes at two ends of the edge. Thus, 
there exists one dimension j such that there are at most 
three doubly-faulty j-edges. In one step, messages can be 
moved to all the pseudo-faulty nodes except the pseudo- 
faulty nodes on the doubly-faulty j-edges. In these t8hree 
doubly-faulty edges, there are at most six pseudo-faulty 
nodes. Therefore, we can use three steps to forward the 
message to one pseudo-faulty node of each doubly-faulty 
j-edges, since each fault-free node has at least one fault- 
free neighbor. Then we take one step to forward messages 
to the other pseudo-faulty nodes on the j-edges along 
dimension j .  Thus, it takes n + 6 steps to broadcast if 
the number of faults in Qn-l is less than or equal to 
n - 2. 

If the number of faults in Qn-l is less than or equal to 
n - 2. The message is first routed to 5" from S .  Then S' 
is treated as a source node. The above process is applied. 
Thus, it takes n + 7 steps. Therefore we conclude that, 
to broadcast a message from a source node in a faulty 
SIMD hypercube with 2n - 3 faulty nodes, n + 7 steps is 
sufficient. 

By the same method, we can develop a broadcasting 
algorithm for the n-cube Containing 4n-9 faults in which 
n + 22 steps are taken. The detail of this algorithm and 
the simulation results for the generalized broadcasting 
algorithm which handles any number of faults can be 
found in [9]. 

4 Efficient determination of Cd,s 
For an n-cube containing any number of faulty nodes, 

the determination of the maximum fault-free subcube 
containing a given node is known to he an NP-complete 
problem [lo,  111. Fortunately, determining the maxi- 
mum fault-free subcube is not, a necmsary requirement 
for achieving the optimal broadcasting in an n-cube con- 
taining at most n - 1 faulty nodes. Remember that the 
analysis of our optimal broadcasting algorithm is actually 
based on the fact that each neighboring d-cube of Cd,s 
contains at least one fault.. Thus, instead of finding the 
largest cd,s, the first phase of Broadcastl is changed to 
finding a prime d-cube which co~~ta ins  the source node. 
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The prime subcube is defined as the one whose neigh- 
boring subcubes contain at  least one fault. We shall see 
that t.he largest fault-free subcube containing the source 
node is a prime subcube, but not vice versa. For exam- 
ple, given the same faulty nodes in a 5-cube shown in 
Fig.2, the prime subcube could be 0 0 0 ~ .  Each of its 
neighboring 2-cubes, i.e. 001**. 010**, and loo**, con- 
tains at least one faulty node. As a result, the algorithm 
Broadcast1 can be applied. In this example, seven nodes 
become pseudo-faulty after 5 steps of broadcasting along 
dimensions 0, 1, 2 ,3 ,  and 4. Since all the internal dimen- 
sions are free, either dimension 0 or 1 can be selected as 
the extra dimension. 

An efficient algorithm to find the fault-free prime sub- 
cube containing the source node is given as follows. Let 
F be the set of the n-bit addresses of faulty nodes in 
an n-cube. We first search for a fault-free l-cube which 
contains the source node ( S )  by checking if there exists a 
dimension i such that the i th neighbor (S(’)) of S is not 
faulty. If a fault-free l-cube containing S is found, then 
we mask the it“ bit of S and the i th bits of addresses of 
the faulty nodes. By ignoring the masked bits, S and the 
elements in F become (n - 1)-bit addresses. The above 
process is repeated for the set F and the source node S 
with ignorance of the masked bits until the neighbors of 
S are all faulty. Notice that different order of the selected 
dimensions results in different prime subcube containing 
the source node. The time complexity of above algorithm 
is O(mn2) which is derived in [9]. 

For phases 2 and 3 of the algorithm Broadcast1 for 
m 5 n - 1 faulty nodes, we need no time since any order 
of the internal and external dimension suffices. However, 
for m 2 n,  we need the broadcasting rule for the exter- 
nal dimensions of c d , S  to increme the success rate of the 
broadcasting as proposed in prt.vious section. Since the 
time complexity for ordering the external dimensions ac- 
cording the proposed broadcasting rule is O(mn2) since 
there are m n-bit addresses and there are n dimensions 
to be searched. The last phase of the broadcasting al- 
gorithm which is equal to finding a free dimension takes 
O(m2n) sequential steps [5]. Thus the overall sequen- 
tial time complexity of the broadcasting algorithm is 
O(mn2 + m2n) in an n-cube with m faults. 

Consider an all-to-all broadcast situation, different 
source nodes may need different dimension sequences to 
be able to broadcast. The algorithm above only forms 
the dimension sequence for a specific node S.  We shall 
see that all the nodes in Cd,s can use the same dimen- 
sion sequence as that of S. However, we still need to 
compute the dimension sequence for other nodes not in 
C d J .  If we use the above efficient algorithm to find the 
prime subcubes for each individual fault-free node, we 
need O(n3 x 2n) time complexity if m = O(n) .  It is so 
inefficient. In the following, we develop an efficient al- 
gorithm which computes the dimension sequences for all 
the fault-free nodes. 

The basic idea of the algorithm is to remove the faulty 
nodes one by one by splitting the n-cube containing m 
faults into different disjoint fault-free subcubes. First, we 
split the n-cube around a faulty node into n disjoint sub- 
cubes with dimension i for 0 < i 5 n - 1. For each sub- 
cube containing faults, we recursively split it  until there 
is no faults in the subcubes. The total time complexity to  
remove all the faulty nodes is T(n,  F )  = O(mn) since it 

takes O(n) time units to remove a fault. It is not difficult 
to  see that T(n, F )  also indicates the number of disjoint 
fault-free subcubes. Hence for the nodes in a fault-free 
subcube, it takes O(mn2 + m2n) to determine the in- 
ternal, external, and extra dimensions. Since there are 
O(mn) disjoint subcubes the overall time complexity of 
the algorithm to determine the broadcasting dimension 
sequence is O(m2n3 -+ m3n2). 

5 Concluding Remarks 
We have proposed an optimal SIMD broadcasting al- 

gorithm for an SIMD hypercube containing up to n - l 
faults. A generalized broadcasting algorithm was also de- 
veloped to tolerate any number of faults with a very high 
probability. We show that the generalized broadcasting 
algorithm takes at most n + 7 and n. + 22 steps in the 
n-cube containing 2n - 3 and 4n - 9 faults, respectively. 
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